
Multi-Level Parallel Query Execution
Framework for CPU and GPU

Hannes Rauhe1,3, Jonathan Dees2,3, Kai-Uwe Sattler1, and Franz Faerber3

1 Ilmenau University of Technology
2 Karlsruhe Institute of Technology

3 SAP AG

Abstract. Recent developments have shown that classic database query
execution techniques, such as the iterator model, are no longer optimal to
leverage the features of modern hardware architectures. This is especially
true for massive parallel architectures, such as many-core processors and
GPUs. Here, the processing of single tuples in one step is not enough work
to utilize the hardware resources and the cache efficiently and to justify
the overhead introduced by iterators. To overcome these problems, we
use just-in-time compilation to execute whole OLAP queries on the GPU
minimizing the overhead for transfer and synchronization. We describe
several patterns, which can be used to build efficient execution plans and
achieve the necessary parallelism. Furthermore, we show that we can use
similar processing models (and even the same source code) on GPUs
and modern CPU architectures, but point out also some differences and
limitations for query execution on GPUs. Results from our experimental
evaluation using a TPC-H subset show that using these patterns we can
achieve a speed-up of up to factor 5 compared to a CPU implementation.

1 Introduction

The recent development in modern hardware architectures provides great oppor-
tunities for database query processing, but at the same time pose also significant
challenge to be able to exploit these hardware features. For example, the clas-
sic iterator model for query execution (sometimes also called Open-Next-Close-
model) together with a tuple-at-a-time processing strategy is no longer optimal
for modern hardware, because it does not utilize the cache architecture and does
not produce enough work to pay off the overhead in case of parallel processing.

Some of the most prominent techniques for addressing these challenges are
fine-granular parallelization and vectorized processing. The goal of paralleliza-
tion is to speed up query response times and/or improving throughput by ex-
ploiting multiple processors/cores. Though, parallel query processing dates back
to the mid eighties, modern multi- and many-core processors including GPUs
require a rethinking of query execution techniques: processing models range from
SIMD to multi-processor strategies, the overhead of starting and coordinating
threads is much smaller than on old multi-processors systems and even the cache
and memory architectures have changed.



Vectorized processing aims at avoiding the “memory wall”, i.e., the imbalance
between memory latency and CPU clock speed [3], by using cache-conscious
algorithms and data structures, vectorized query processing strategies as used
for instance in Vectorwise [2,17] or—as an extreme case—columnwise processing
of in-memory database systems like SAP HANA DB.

A promising approach to combine these techniques for making efficient use
of the new hardware features is Just-In-Time (JIT) compilation where OLAP
queries are translated into a single function that pipelines the data through the
operators specified by the query. While lightweight query compilation has been
already proposed in other works [12, 14], in our work we particularly focus on
compilation for parallelization. This approach requires a different handling of
parallelism, because we cannot differentiate between inter- and intra-operator
parallelism any more. Instead the parallelism must be an integral part of the
code generation.

In this paper, we show that we can use the concept of JIT compilation to
build a bulk-synchronous model for parallel query processing that works both
on multi-core CPUs and on general purpose GPUs. Although the architectures
look very different at first, the techniques we have to use to leverage their full
potential are very similar.

Compiling queries into executable code should be driven by some target
patterns. As we cannot longer rely on the iterator model, we present and discuss
some patterns leveraging the different levels of parallelization (threads at the
first level and SIMD at the second level). We extend our previous work on
query compilation for multi-core CPUs [6] by taking massively parallel GPU
architectures into account and discuss as well as show by experimental results
similarities and differences of both processing models and their impact on query
execution.

2 Related Work

Over the last decade there has been significant research on using GPUs for query
execution. He et al. built GDB, which is able to offload the execution of single
operators to the GPU [8]. They implemented a set of primitives to execute joins
efficiently. The main problem is that the data has to be transferred to the GPU,
but only a small amount of work is done before copying the results back to the
main memory. Peter Bakkum and Kevin Skadron ported SQLite to the GPU [1].
The complete database is stored on the graphics card and only the results are
transferred. Since all operations are executed on the GPU, their system is not
able to use variable length strings. It can process simple filter operations, but
does neither support joins nor aggregations. A similar approach with the focus
on transactional processing has been tried in [9]. Their implementation is able to
execute a set of stored procedures on the data in the GPU’s memory and handles
read and write access. To the best of our knowledge there are no publications
about running complex analytic queries completely on the GPU.



Compiling a complete query plan (or parts of it) into executable code is a
radical and novel approach. Classical database systems generate executable code
fragments for single operators, which can be used and combined to perform a
SQL query. There are several recent approaches for generating machine code for a
complete SQL query. The prototype system HIQUE [12] generates C code that
is just-in-time-compiled with gcc, linked as shared library and then executed.
The compile times are noticeable (around seconds) and the measured execution
time compared to traditional execution varies: TPC-H queries 1 and 3 are faster,
query 10 is slower. Note that the data layout is not optimized for the generated
C code. HyPer [11, 14] also generates code for incoming SQL queries. However,
instead of using C, they directly generate LLVM IR code (similar to Java byte
code), which is further translated to executable code by an LLVM compiler [13].
Using this light-weight compiler they achieve low compile times in the range of
several milliseconds. Execution times for the measured TPC-H queries are also
fast, still, they use only a single thread for execution and no parallelization.

One of the fundamental models for parallel query execution is the exchange
operator proposed by Graefe [7]. This operator model allows both intra-operator
parallelism on partitioned datasets as well as horizontal and vertical inter-operator
parallelism. Although this model can also be applied to vectorized processing
strategies it still relies on iterator-based execution. Thus, the required synchro-
nization between each operator can induce a noticeable overhead.

3 Basics

In this section we explain the technology as well as some basic decisions we
had to make before going into the details of our work. We start with explaining
the hardware characteristics in Sect. 3.1. Since we have to copy the data to the
GPU’s memory before we can use it, the transfer over the PCI-Express bus is
the main bottleneck for data intensive algorithms. In Sect. 3.2 we address this
problem and explain how we cope with it.

3.1 Parallel CPU and GPU Architecture

Although modern GPU and CPU architectures look different, we face a lot of
similar problems when trying to develop efficient algorithms for both. In order
to achieve maximum performance, it is mandatory to use parallel algorithms.
Also, we generally want to avoid synchronisation and communication overhead
by partitioning the input first and then processing the chunks with independent
threads as long as possible. In the literature this is called bulk-synchronous
processing [16].

There are some differences in the details of parallelism of both platforms.
On the CPU we have to be careful not to oversubscribe the cores with a high
amount of threads, while the GPU resp. the programming framework for the
GPU handles this on its own. However, on the CPU oversubscription can be
easily avoided by using tasks instead of threads: a framework, such as Intel’s



TBB1, creates a fixed number of threads once and assigns work to them in
form of tasks. This way the expensive context switches between threads are not
necessary. While the usage of tasks is enough to exploit the parallelism of CPUs,
another form of parallelism is needed to use the GPU efficiently: SIMD. Both
the OpenCL platform model2 and CUDA3 force the developer to write code in
a SIMD fashion.

In addition to the parallel design of algorithms, we face the challenge to
organize memory access in a way that fits to the hardware. In both architectures,
CPU and GPU, there is a memory hierarchy with large and comparatively slow
RAM and small but faster caches. Cache-efficient algorithms work in a way, that
the data is in the cache when the algorithm needs it and only data that is really
needed is transferred to the cache. On the CPU the hardware decides which data
is copied from RAM to cache based on fixed strategies. Local memory on the
GPU is equivalent to cache on the CPU, but it has to be filled manually.

With all data residing in main memory and many cores available for parallel
execution, the main memory bandwidth becomes a new bottleneck for query
processing. Therefore, we need to use memory bandwidth as efficiently as possi-
ble. On modern server CPUs this requires a careful placement of data structures
to support NUMA-aware access, which has been shown in [6]. The GPU’s mem-
ory is highly optimized for the way graphical algorithms access data: threads
of neighboring cores process data in neighboring memory segments. If general
purpose algorithms work in a similar way, they can benefit from the GPU archi-
tecture. If they load data from memory in a different way, the performance can
be orders of magnitude worse. Details can be found in [15].

The challenges we face when writing efficient algorithms are very similar,
no matter if they run on the GPU or the CPU. Only in case of the GPU the
performance effects of using inadequate patterns and strategies are much worse.
So we have to make sure, that our algorithms are able to distribute their work
over a high number of threads/tasks and exploit the memory hierarchy on both
architectures. On the GPU we have to take special care about using a SIMD
approach to distribute small work packages and use coalesced access to the device
memory. On the CPU it is important not to oversubscribe it with threads and
consider NUMA effects of the parallel architecture. In this paper we suggest a
model that supports query execution on both architectures and takes care of
their differences.

3.2 The Data Transfer Problem

The transfer to the GPU is the main bottleneck for data centric workloads. In
general, it takes significantly longer than the execution of the queries, because
the transfer of a tuple is usually slower than processing it once. To make mat-
ters worse, in general we cannot predict beforehand which values of a column

1 http://www.threadingbuildingblocks.org
2 http://www.khronos.org/opencl/
3 http://www.nvidia.com/cuda



are really accessed and therefore need to transfer all values of a column used by
the query, which further increases the data volume. One way to cope with this
problem is the usage of Universal Virtual Addressing (UVA). UVA is a sophisti-
cated streaming technique for CUDA, which allows the transfer of required data
at the moment it is needed be the GPU. The authors of [10] showed how to use
it to process joins on the GPU. However, streaming is still rather inefficient for
random access to the main memory. Even if the GPU accesses the main memory
sequentially we remain limited to the PCI-Express bandwidth of theoretically 8
GB/s (PCI-Express 2).

From our perspective there are three possibilities to cope with this problem:

1. The data is replicated to the GPU memory before query execution and
cached there.

2. The data is stored exclusively in the GPU’s memory.
3. CPU and GPU share the same memory.

The first option limits the amount of data to the size of the device memory,
which is very small at the moment: high end graphic cards for general-purpose
computations have about 4–16 GB. Furthermore, updates have to be propagated
to the GPU.

Storing the data exclusively in the GPU’s memory also limits the size of the
database. Furthermore, there are queries that should be executed on the CPU,
because they require advanced string operations or have a large result set (see
Sect. 4.4). In this case we face the transfer problem again, only this time we have
to copy from GPU to CPU.

The third solution, i.e., CPU and GPU sharing the same memory, is not yet
available. Integrated GPUs already use the CPU’s main memory, but internally
it is divided into partitions for GPU and CPU and each can only access its own
partition. So we can copy data very fast from GPU to CPU and vice versa as
we remain in main memory, but still need to replicate. For the future AMD, for
instance, plans to use the same memory for both parts of the chip [4].

We decided to use the first approach for our research, because it makes no
sense to compare GPU and CPU performance as long as we need to transfer
the data. We also want to be able to execute queries on the CPU and the GPU
at the same time. Until real shared memory is available, replication is the best
choice for our needs.

4 A new Model to Execute Queries in Parallel

In this paper we present a framework that provides simple parallelism for just-
in-time query compilation. Section 4.1 gives a short overview about why and how
we can use JIT compilation to speed up query execution. There are two ways
of applying parallelism to the execution. On the one hand we can distribute the
work over independent threads, which are then executed on different computing
cores. In our model we call this the first level of parallelism. In Sect. 4.2 we
describe the basic model that allows us to execute queries in parallel on the



CPU by using independent threads. On the other hand it is possible to use SIMD
to exploit the parallel computing capabilities of one CPU core resp. Streaming
Multi Processor of the GPU. In Sect. 4.3 we make use of this second level of
parallelism to extend our model and execute queries efficiently on the GPU. Our
GPU framework has some limitations that we discuss in Sect. 4.4.

4.1 JIT-Compilation for SQL Queries

To take full advantage of modern hardware for query processing, we need to use
the available processing power carefully. Here, the classical iterator model as well
as block-oriented processing have their problems. The iterator model produces a
lot of overhead by virtual function calls, while block-oriented processing requires
the materialization of intermediate results (see Neuman [14] and Dees et al. [6]).
Virtual function calls can cost a lot of processing cycles, similar to materializa-
tion, as here we often need to wait for data to be written or loaded. By compiling
the whole SQL query into a single function, we can get around virtual function
calls and most materialization in order to use processing units as efficiently as
possible. For the CPU-only version we used the LLVM framework to compile
this function at runtime [6].

Our query execution is fully parallelized since we target modern many-core
machines. Neumann [14] already explained that a parallel approach for his code
generation can be applied without changing the general patterns. Operations,
such as joins and selections, can be executed independently – and therefore in
parallel – on different fragments of the data. If other operations are needed we
use the patterns described in the next section. Later in Sect. 4.3 we go into details
for applying these patterns on GPUs, as here some changes are necessary.

4.2 A Model for Parallel Execution

One of the main challenges when designing parallel algorithms is to keep com-
munication between threads low. Every time we synchronize threads to exchange
data, some cores are forced to wait for others to finish their work. This problem
can be avoided by partitioning the work in equally-sized chunks and let every
thread process one or more chunks independently. In the end, the results of each
thread are merged into one final result. This approach is called bulk-synchronous
model [16] and describes the first level of parallelism we need to distribute work
over independent threads.

Our query execution always starts with a certain table (defined by the join
order), which is split horizontally. This is performed only logically and does
not imply real work. In the first phase of the query execution every partition
of the table is processed by one thread in a tight loop, i.e., selections, joins,
and arithmetic terms are executed for each tuple independently before the next
tuple is processed. We call this the Compute phase, since it is the major part
of the work. Before we start the second phase of the query execution, called
Accumulate, all threads are synchronized once. The Accumulate phase merges
the intermediate results into one final result.



This model is similar to the MapReduce model, which is used to distribute
work over a heterogeneous cluster of machines [5]. However, our model does not
have the limitations of using key-value pairs. Additionally, the Accumulate phase
does not necessarily reduce the number of results, while in the MapReduce model
the Reduce phase always groups values by their keys. In case of a selection, for
instance, the Accumulate phase just concatenates the intermediate results.

The Accumulate phase depends on the type of query, which can be one of
the following patterns.

Single Result The query produces just a single result line. For example, this
is the case SQL queries with a sum clause but no group by, see TPC-H query 6:

select sum(l_ext...*l_discout) from ...

This is the simplest case for parallelization: Each thread just holds one re-
sult record. Two interim results can be easily combined to one new result by
combining the records according to the aggregation function.

(Shared) Index Hashing On SQL queries with a group by clause where we
can compute and guarantee a maximum cardinality that is not too large, we can
use index hashing. This occurs for example at TPC-H query 1:

select sum(...) from ... group by l_returnflag, l_linestatus

We store the attributes l returnflag and l linestatus in a dictionary-
compressed form. The size of each dictionary is equal to the number of distinct
values of the attribute. With this we can directly deduce an upper bound for
the cardinality of the combination of both attributes. In our concrete example
the cardinality of l returnflag is 2 and l linestatus has 3 distinct values for
every scale factor of TPC-H. Therefore the combined cardinality is 2·3 = 6. When
this upper bound multiplied with the data size of one record (which consists of
several sums in query 1) is smaller than the cache size, we can directly allocate a
hash table that can hold the complete result. We use index hashing for the hash
table, i.e., we compute one distinct index for the combination of all attributes
that serves as a hash key. On the CPU, we differentiate whether the results fit
into the L3 (shared by all cores of one CPU) or the L2 (single core) cache. If
only the L3 cache is sufficient, we use a shared hash table for each CPU where
entries are synchronized with latches. We can avoid this synchronization when
the results are small enough to fit into L2 cache. In this case we use a separate
hash table for each thread while remaining cache efficient.

For combining two hash tables, we just combine all single entries at the same
positions in both hash tables, which is performed similar to the single result’s
handling. There is no difference in combining shared or non-shared hash tables.



Dynamic Hash Table Sometimes we cannot deduce a reasonable upper bound
for the maximum group by cardinality or we can not compute a small hash index
efficiently from the attributes. This can happen if we do not have any estimation
of the cardinality of one of the group by attributes or the combination of all
group by attributes just exceeds a reasonable number. In this case we need a
dynamic hash table that can grow over time and use a general 64-bit hash key
from all attributes. The following is an example query in which it is difficult to
give a good estimation for the group by cardinality:

select sum() ... from ... group by l_extendedprice,

n_nationkey, p_partsupp, c_custkey, s_suppkey

Combining two hash tables is performed by rehashing all elements from
one table and inserting it into the other table, i.e., combing the corresponding
records.

Array For simple select statements without a group by, we just need to fill
an array with all matching lines. The following SQL query is an example for this
problem:

select p_name from parts where p_name like ’%green%’

4.3 Adjusting the Model for GPU Execution

The first adjustment to execute the Compute/Accumulate model on the GPU is
a technical one: we replace LLVM with OpenCL, which requires a few changes.
Before we execute the query, we allocate space for its result in the graphic card’s
memory, since the kernel is not able to do that on its own. We then call the kernel
with the addresses to the required columns, indexes, and the result memory as
parameters. After the actual execution the results are copied to the RAM to give
the CPU access to it. The result memory on the device can be freed.

Since the GPU is not able to synchronize the workgroups of one kernel, we
need to split the two phases into two kernels. As we can see in Fig. 1(a), the
workgroups of the Compute kernel work independently and write the interme-
diate results (1) to global memory. The Accumulate kernel works only with one
workgroup. It writes the final result (3) to global memory (the GPU’s RAM).

To differentiate this first level of parallelism from the second, we call this the
global Compute/Accumulate process. It is a direct translation of the CPU imple-
mentation and shows that workgroups on the GPU are comparable to threads
on the CPU. Every workgroup has a number of GPU threads, which work in a
SIMD fashion. Therefore, the main challenge and the second adjustment is to
extend the model by a second level of parallelism to use these threads.

In contrast to CPU threads, every OpenCL workgroup is capable of using up
to 1024 Stream Processors for calculations. Threads running on those Stream
Processors do not run independently but in a SIMD fashion, i.e., at least 32
threads are executing the same instruction at the same time. These threads



(a)

1 1 1

Compute

Accumulate

Global
Sync

2

(b)

33 3 3
3

3 3
Local
Compute

Local
Accumulate

Local
Sync

1
1

1

Accumulate

Global
Sync

2

Fig. 1. (a) Basic Model, (b) Extended Model
Legend: 1 – intermediate results, 2 – global result, 3 – private result

form a so called warp—the warp size may be different for future architectures. If
there are branches in the code, all threads of one warp step through all branches.
Threads that are not used in a certain branch execute NOPs as long as the other
threads are calculating. The threads of one warp are always in sync, but all
threads of one workgroup must be synchronized manually if necessary. Although
this local synchronization is cheap compared to a global synchronization, we
have to be careful about using it. Every time it is called, typically all workgroups
execute it. Since we use up to 1,000 workgroups (see Sect. 5.2), the costs for one
synchronization also multiply.

Therefore we apply a local Compute/Accumulate model again in the global
Compute phase. Since the local results are only accessed by the threads of one
workgroup, there is no need to write them to global memory. The whole process
can be seen in Fig. 1(b). Every thread computes its result in private memory (3),
usually the registers of each Stream Processor. At the end of the local Compute
phase, the results are written to local memory, the threads are synchronized, and
the local Accumulate phase is started. These local processes work in a SIMD
fashion and therefore differ from the global phase in the detail.

The local Compute phase works on batches of tuples. The size of the batch
equals the number of threads of one workgroup. The thread ID equals the po-
sition of the tuple in the batch, i.e., the first thread of the workgroup works on
the first tuple, the second on the second, and so on. This works much better
than horizontally partitioning the table as we do in the global Compute phase,
because we enforce coalesced memory access. The worst case for this SIMD ap-
proach arises if a few tuples of the batch require a lot of work and the rest
is filtered out early. As we explained above this leads to a lot of cores execut-
ing NOPs, while only a few are doing real work. If all tuples of the batch are
filtered—or at least all tuples processed by one warp—the GPU can skip the
rest of the execution for this batch and proceed to the next. Fortunately this is
often the case in typical OLAP scenarios data, e.g., data of a certain time frame
is queried and is stored in the same part of the table.

The aggregation specified by the query is in parts already done in the local
Compute phase, where each thread works on private memory. In the local/global
Accumulate phase we merge these private/intermediate results. The threads are
writing simultaneously to local memory, so we require special algorithms to avoid



conflicts. The algorithms (prefix sum, sum, merge, and bitonic sort) are well
known and can be found in the example directory that is delivered with NVidia’s
OpenCL implementation. Therefore we just name them at this point and give a
short overview but not a detailed description.

The easiest case is no aggregation at all, where we just copy private results
to local memory and later to global memory. However, since all threads copy
their result in parallel, the right address has to be determined to guarantee that
the global result has no gaps. Therefore, each thread counts the number of its
private results and writes the size to local memory. To find the right offset for
each threads starting position we calculate the prefix sum in local memory. This
is done by pairwise adding elements in log n steps for n being the number of
threads. In the end every position holds the number of private results of all
threads with smaller IDs and therefore the position in the global result

We use a very similar approach for the sum-Aggregation. In case of a single
result pattern (see Sect. 4.2) we calculate the sum of the private results in parallel
by again using pairwise adding of elements in local memory. For index hashing
(see Sect. 4.2) this has to be done for each row of the result.

Sorting is the final process of the Accumulate phase. In every case we can use
bitonic sort. For the array pattern it is also possible to pre-sort the intermediate
results in the Compute phase and use a simple pair-wise merge in the Accumulate
phase.

4.4 Limitations of the GPU Execution

In this section we discuss the limits of our framework. We categorize these in
two classes:

Hard limits Due to the nature of our model and the GPU’s architecture there are
limits that cannot be exceeded with our approach. One of these limits is given
by OpenCL: we cannot allocate memory inside kernels, so we have to allocate
memory for (intermediate) results in advance. Therefore we have to know the
maximum result size and since it is possible that one thread’s private result is as
big as the final result, we have to allocate this maximum size for every thread.
One solution to this problem would be to allocate the maximum result size only
once and let every thread write to the next free slot. This method would require
a lot of synchronization and/or atomic operations, which is exactly what we
want to avoid. With our approach we are limited to a small result size that is
known or can be computed in advance, e.g., top-k queries or queries that use
group by on keys that have relatively small cardinalities. The concrete number
of results we can compute, depends on the temporary memory that is needed
for the computation, the hardware and the data types used in the result, but it
is in the order of several hundred rows.

Soft limits Some use cases are known not to fit to the GPU’s architecture.
It is possible to handle scenarios of this type on the GPU, but it is unlikely
that we can benefit from doing that. The soft limits of our implementation are



very common for general-purpose calculations on the GPU. First, the GPU is
very bad at handling strings or other variable length data types. They simply
do not fit into the processing model and usually require a lot of memory. An
indication for this problem is, that even after a decade of research on general-
purpose computing on graphics processing units and commercial interest in it,
there is no string library available for the GPU, not even simple methods such as
strstr() for string comparison. In most cases we can avoid handling them on
the GPU by using dictionary encoding. Second, the size of the input data must
exceed a certain minimum to use the full parallelism of the GPU (see Sect. 5.2).

Furthermore, GPUs cannot synchronize simultaneously running workgroups.
Therefore we cannot efficiently use algorithms accessing shared data structures,
such as the shared index hashing and the dynamic hash table approach described
in Sect. 4.2.

5 Evaluation

In this section we present the performance results of our framework. We compare
the performance of NVidia’s Tesla C2050 to a HP Z600 workstation with two
Intel Xeon X5650 CPUs and 24 GB of RAM. The Tesla GPU consists of 14
Streaming Multiprocessors with 32 CUDA cores each and has 4 GB of RAM.
The JIT compilation was done by LLVM 2.9 for the CPU and the OpenCL
implementation that is shipped with CUDA 5.0 for the GPU.

5.1 GPU and CPU Performance

Since the native CPU implementation described in Sect. 4 was already compared
to other DBMS [6], we take it as our baseline and compare it to our OpenCL
implementation. In our first experiment we compare the implementations by
measuring the raw execution time of each query. As explained in Sect. 3.2 the
necessary columns for execution are in memory, we do not consider the compile
times, and we include result memory allocation (CPU and GPU) and result
transfer (only needed on GPU). We configure the OpenCL framework to use 300
workgroups with 512 threads each on the GPU and 1000 workgroups with 512
threads on the CPU. This configuration gives good results for all queries as we
show in Sect. 5.2.

Figure 2 compares the execution times for seven TPC-H queries on differ-
ent platforms: Z600 is the native CPU implementation on the Z600 machine,
Tesla/CL the OpenCL implementation on the Tesla GPU and Z600/CL the
OpenCL implementation executed on the CPU of the workstation. As we can
see, the OpenCL implementation for the GPU is considerably faster than the
native implementation on the workstation for most queries. The only exception
is Q1, which takes almost twice as long. The OpenCL implementation of Q1 on
the CPU is significantly worse than native implementation as well. The reason
for this is hard to find, since we cannot measure time within the OpenCL ker-
nel. The performance results might be worse because in contrast to the other



1 4 5 6 7 12 14

0

50

100

150

200

Query

E
x
ec
u
ti
o
n
ti
m
e
in

m
il
li
se
co
n
d
s

Z600

Tesla/CL

Z600/CL

Fig. 2. Comparison of execution times

20 24 28 212 216 220 224 228

10−2

10−1

100

Grain Size

ex
ec
u
ti
o
n
ti
m
e
in

se
co
n
d
s

Q1 Q4

Q5 Q6

Q7 Q12

Q14

Fig. 3. Comparison of different grain sizes

queries the execution of Q1 is dominated by aggregating the results in the local
accumulate phase. This indicates that the CPU works better for queries without
joins but with aggregations. Further tests and micro-benchmarks are needed to
proof this hypothesis.

It is remarkable that the OpenCL implementation on the CPU achieves al-
most the same performance as the native CPU implementation for half of the
queries, considering that we spent no effort in optimizing it for the actual archi-
tecture.

5.2 Number of Workgroups and Threads

We illustrate in Fig. 4 how the number of workgroups used for the execution of
the query influences the performance. We measure two different configurations:
the left figure shows the results when we use 512 threads per workgroup; on
the right we use 256 threads per workgroup. Due to implementation details our
framework is not able to execute queries 1 and 5 for less than around 140 resp.
200 workgroups. For the other queries we can clearly see in both figures that we
need at least around 50,000 threads in total to achieve the best performance.
This high number gives the task scheduler on the GPU the ability to execute
instructions on all cores (448 on the Tesla C2050) while some threads are waiting
for memory access. There is no noticeable overhead if more threads are started
with the following exceptions:

Query 4 shows irregular behavior. It is the fastest query in our set, the total
execution time is between 1 and 2 ms. Therefore uneven data distribution has a
high impact.

Query 5 is getting slower with more threads, because the table chunks are
too small and therefore the work done by a thread is not enough. The table,
which is distributed over the workgroups, has only 1.5 mio rows, i.e., each thread
processes only 3 rows in case of 1,000 workgroups with 512 threads each. This
matter is even worse with Query 7, because the table we split has only 100,000
rows. The other queries process tables which have at least 15 mio rows.



This experiment shows that the GPU works well with a very high number of
threads as long as there is enough work to distribute. In our experiments, one
thread should process at least a dozen rows.

The behavior is similar to task scheduling on the CPU, where task creation
does not induce significant overhead in contrast to thread creation. Figure 3
shows the execution time of the native implementation depending on the grain
sizes, which is the TBB term for the size of the partition and therefore controls
the number of tasks. As we can see, a large grain size prevents the task scheduler
from using more than one thread and therefore slows down execution. The op-
timal grain size for all queries is around 1000. We achieve a speed-up of 7 up to
15 for this grain size. If the partitions are smaller, the execution time increases
again. Similar to our OpenCL implementation the optimal number of tasks per
core is around 100.

0 200 400 600 800 1,000

10−3

10−2

10−1
Q1

Q4

Q5

Q6

Q12

Q14

Q7

Number of Workgroups (512 Threads)

ex
ec
u
ti
o
n
ti
m
e
in

se
co
n
d
s

0 200 400 600 800 1,000

10−3

10−2

10−1
Q1

Q4

Q5

Q6

Q12

Q14

Q7

Number of Workgroups (256 Threads)

Fig. 4. Comparison of different workgroup numbers (left: 512, right: 256 threads per
workgroup)

6 Conclusion

In this work, we have investigated the parallel execution of OLAP queries on
massively parallel processor architectures by leveraging a JIT query compilation
approach. Our goal was to identify and evaluate patterns for parallelization that
are suitable both for CPUs and GPUs. As a core pattern we have presented
a two-phase Compute/Accumulate model similar to the MapReduce paradigm,
which requires only one global synchronisation point. For compiling the whole
query into executable code we use the OpenCL framework which already pro-
vides a JIT compiler for different devices. Surprisingly we were able to execute
our GPU-optimized code on the CPU as well. Although, this is still slower than
a native CPU optimized implementation, the advantage of having only one im-
plementation for different platforms may be worth the loss in performance. Since



OpenCL is an open standard for parallel platforms, we expect that our frame-
work also runs on other coprocessors.

Our experimental results using a subset of TPC-H have shown that GPUs
can be used to execute complete OLAP queries and even can outperform mod-
ern CPUs for certain queries. However, we have also discussed some limitations
and differences between CPU and GPU processing which have to be taken into
account for query compilation and execution.

References

1. Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with
CUDA. In: Proc. 3rd Workshop on GPGPU. p. 94 (2010)

2. Boncz, P., Zukowski, M., Nes, N.: MonetDB/X100: Hyper-Pipelining Query Exe-
cution. In: Proc. CIDR. vol. 5 (2005)

3. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in monetdb.
Commun. ACM 51(12), 77–85 (2008)

4. Daga, M., Aji, A., Feng, W.: On the Efficacy of a Fused CPU+GPU Processor (or
APU) for Parallel Computing. In: SAAHPC. IEEE (2011)

5. Dean, J., Ghemawat, S.: MapReduce. Comm. of the ACM 51(1), 107 (Jan 2008)
6. Dees, J., Sanders, P.: Efficient Many-Core Query Execution in Main Memory

Column-Stores. to appear on ICDE 2013 (2013)
7. Graefe, G.: Encapsulation of Parallelism in the Volcano Query Processing System,

vol. 19. ACM (1990)
8. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.:

Relational Query Coprocessing on Graphics Processors. ACM Transactions on
Database Systems 34 (2009)

9. He, B., Yu, J.X.: High-Throughput Transaction Executions on Graphics Proces-
sors. PVLDB 4, 314–325 (Mar 2011)

10. Kaldewey, T., Lohman, G., Mueller, R., Volk, P.: GPU Join Processing Revisited.
Proc. 8th DaMoN (2012)

11. Kemper, A., Neumann, T.: HyPer: A hybrid OLTP&OLAP Main Memory
Database System Based on Virtual Memory Snapshots. In: Proc. of ICDE (2011)

12. Krikellas, K., Viglas, S., Cintra, M.: Generating Code for Holistic Query Evalua-
tion. In: Proc. of ICDE. pp. 613–624. IEEE (2010)

13. Lattner, C.: LLVM and Clang: Next Generation Compiler Technology. In: The
BSD Conference (2008)

14. Neumann, T.: Efficiently Compiling Efficient Query Plans for Modern Hardware.
Proc. of VLDB 4(9), 539–550 (2011)

15. NVidia: CUDA C Best Practices Guide (2012)
16. Valiant, L.G.: A Bridging Model for Parallel Computation. Comm. ACM 33 (1990)
17. Zukowski, M., Boncz, P.A.: From X100 to Vectorwise: Opportunities, Challenges

and Things Most Researchers do not Think About. In: SIGMOD Conference (2012)


	Multi-Level Parallel Query Execution Framework for CPU and GPU

